Anesthesia Pharmacology Chapter 
9:  Pharmacology of Antiarrhythmic Drugs Practice Questions
	Click on the correct answer.
 
 
 
- Classifications of antiarrhythmic drugs: -   sodium channel blockers
-   calcium channel blockers
-   potassium channel blockers
-   beta-blockers
-   all of the above
 
- Antiarrhythmic drug classification: class II -   sodium channel blocker
-   calcium channel blocker
-   beta adrenergic receptor blocker
-   potassium channel blocker
 
- Factors that may precipitate or exacerbate arrhythmias: -   ischemia
-   cardiac fiber stretching
-   alkalosis
-   A & C
-   A, B & C
 
- Factors that precipitate or exacerbate arrhythmias: -   abnormal electrolytes
-   excess vagal tone
-   antiarrhythmic drugs
-   A & C
-   A, B & C
 
- Normal cardiac impulse propagation sequence: -   AV node, His-Purkinje, ventricle, SA node
-   SA node, His-Purkinje, AV node, ventricle
-   SA node, AV node, His-Purkinje, ventricle
-   AV node, SA node, His-Purkinje, ventricle
-   none of the above
 
- Possible cause(s)/characteristic(s) of arrhythmias: -   Improper site of origination
-   abnormal rate
-   abnormal conduction characteristics
-   A & B
-   A & C
 
- Principal ions involved in determining the cardiac transmembrane potential: -   chloride, sodium, potassium
-   potassium, calcium, chloride
-   sodium, calcium, large organic anions
-   sodium, calcium, potassium
-   sodium, potassium, large organic anions
 
- Factors controlling membrane ionic "gates": -   ionic conditions
-   metabolic conditions
-   membrane potential
-   A & B
-   A, B & C
 
- In reference to ionic gradients, the term "electrogenic" means: -   that a large membrane capacitance is present
-   that the membrane is relatively permeable to potassium
-   that net current flows as a result of ionic transport
-   that current flows independent of membrane voltage
-   none of the above
 
- Concerning the ionic permeability state of the resting membrane: -   the membrane is relatively impermeable to potassium
-   the membrane is relatively impermeable to sodium
-   both
-   neither
 
- Cardiac cell permeability and conductance: -   conductance -- determined by characteristics of ion channel proteins
-   current flow = voltage X conductance
-   both
-   neither
 
- Cardiac cell membranes: "driving forces" acting on ions-- -   Tendency for sodium to be driven out of the cell
-   Limited tendency for potassium movement because of the balance between the potassium concentration and membrane electrical gradients
-   The concentration gradient for potassium tends to drive potassium out
-   B & C
-   A, B & C
 
- Principal determinant(s) of cardiac resting membrane potential: -   external potassium concentration
-   inward potassium rectifier channel state
-   both
-   neither
 
- Rapid upstroke characteristic of phase 0 depolarization in Purkinje and ventricular muscle cells: -   due to rapid increase in calcium permeability
-   due to rapid decrease in potassium conductance
-   due to rapid increase in sodium conductance
-   due to significant outward chloride currents
 
- Phase of the cardiac action potential (in SA nodal cells, for example) that is associated with "diastolic depolarization": -   phase 0
-   phase 1
-   phase 2
-   phase 3
-   phase 4
 
- Factors which promotes ectopic pacemaker development: -   reduced autonomic, sympathetic activity
-   reduced serum potassium
-   both
-   neither
 
- Sequence of cardiac Purkinje fiber ion channel activation: -   calcium, potassium, sodium
-   potassium, calcium, sodium
-   sodium, calcium, potassium
 
- Activation of this ion channel mainly associated with cardiac cell repolarization: -   calcium
-   potassium
-   sodium
 
- Relationship between membrane resting potential when depolarization occurs and conduction velocities: -   increased membrane potential: reduced conduction velocity
-   increased membrane potential: increased conduction velocity
 
- Consequences of reduced sodium channel activation due to the reduced membrane potential (less negative) at the time and depolarization -   reduced of upstroke velocity (phase 0); i.e., reduced maximum rate of membrane potential change
-   reduced conduction velocity
-   increased of effective refractory period (prolongation of recovery)
-   B & C
-   A, B & C